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Genomewide Linkage Scan Identifies a Novel Susceptibility Locus
for Restless Legs Syndrome on Chromosome 9p
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Restless legs syndrome (RLS) is a common neurological disorder that affects 5%-12% of all whites. To genetically
dissect this complex disease, we characterized 15 large and extended multiplex pedigrees, consisting of 453 subjects
(134 affected with RLS). A familial aggregation analysis was performed, and SAGE FCOR was used to quantify
the total genetic contribution in these families. A weighted average correlation of 0.17 between first-degree relatives
was obtained, and heritability was estimated to be 0.60 for all types of relative pairs, indicating that RLS is a
highly heritable trait in this ascertained cohort. A genomewide linkage scan, which involved >400 10-cM-spaced
markers and spanned the entire human genome, was then performed for 144 individuals in the cohort. Model-free
linkage analysis identified one novel significant RLS-susceptibility locus on chromosome 9p24-22 with a multipoint
nonparametric linkage (NPL) score of 3.22. Suggestive evidence of linkage was found on chromosome 3q26.31
(NPL score 2.03), chromosome 4q31.21 (NPL score 2.28), chromosome 5p13.3 (NPL score 2.68), and chromosome
6p22.3 (NPL score 2.06). Model-based linkage analysis, with the assumption of an autosomal-dominant mode of
inheritance, validated the 9p24-22 linkage to RLS in two families (two-point LOD score of 3.77; multipoint LOD
score of 3.91). Further fine mapping confirmed the linkage result and defined this novel RLS disease locus to a
critical interval. This study establishes RLS as a highly heritable trait, identifies a novel genetic locus for RLS, and

will facilitate further cloning and identification of the genes for RLS.

Introduction

Restless legs syndrome (RLS [MIM 102300]) is a com-
mon sensorimotor disorder that affects 5%-12% of
white populations (Phillips et al. 2000; Rothdach et al.
2000; Ulfberg et al. 20014, 2001b). Asian and African
populations appear to be less affected (Kageyama et al.
2000; Tan and Ondo 2000). In 1993, the International
Restless Legs Syndrome Study Group (IRLSSG) de-
scribed a set of minimal inclusion criteria for RLS, con-
sisting of four primary features (Walters 1995): (1) an
urge to move the extremities, often because of uncom-
fortable sensations (paresthesia/dysesthesia); (2) motor
restlessness; (3) worsening of symptoms with rest and
at least partial relief during movement; and (4) wors-
ening of symptoms in the evening or night. A more recent
National Institutes of Health (NIH) consensus statement
provided a modified version of the criteria: (1) an urge
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to move the limbs with or without paresthesia; (2) wors-
ening of symptoms at rest; (3) at least transient or partial
relief of symptoms with movement; and (4) symptoms
worsening during the evening or night (Allen et al.
2003a, 2003b; Walters et al. 2003). The RLS diagnosis
is based on these entry criteria exclusively (Allen et al.
2003b), although periodic limb movements while asleep
(PLMS) (Montplaisir et al. 1997), a normal neurological
examination, improvement with dopaminergic medica-
tions, and a family history of RLS all support the di-
agnosis. Presentation of symptoms in adolescence or
even infancy is not rare (Picchietti et al. 1998), although
many pediatric patients probably manifest the same con-
dition as adult RLS without meeting the same accepted
diagnostic criteria (Allen et al. 2003b).

The etiology of RLS is not known, but recent CNS
pathology studies demonstrate reduced intracellular,
and possibly extracellular, iron stores (Connor et al.
2003). The actual symptoms of RLS, however, improve
with dopaminergic medications, which implicates a do-
paminergic system in the pathogenesis of RLS (Ondo
and Jankovic 1996). The exact interaction between re-
duced iron and dopaminergic dysfunction is currently
under investigation (Earley et al. 2000; Allen and Earley
2001; Allen et al. 2001).

A family history of RLS is reported by ~65% of RLS
patients, suggesting the involvement of genetic factors
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Table 1
Summary Statistics of RLS Families
ITEM STATISTIC
No. of pedigrees:
All 15
With 2 generations 1
With 3 generations 5
With 4 generations 7
With 5 generations 2
Mean size of pedigrees 30.2 + 23.8 (min="7, max=90)
No. of pairs:
Parent-offspring 634
Sib-sib: 399
Sister-sister 94
Brother-brother 121
Brother-sister 184
Grandparent-grandchild 492
Half-sib 12
No. of subjects:
All 453
Affected 134
Founder 136
Non-founder 317

Male:female ratio 227:226 (50.1%:49.9%)

in the development of RLS (Montplaisir et al. 1997;
Lazzarini et al. 1999; Rothdach et al. 2000; Allen et al.
2002; Winkelmann et al. 2002). It is probable that fe-
males are affected somewhat more than males (Roth-
dach et al. 2000). The finding that MZ twins are highly
concordant for the presence of RLS also supports the
hypothesis that genetic factors contribute to the path-
ogenesis of RLS (Ondo et al. 2000). Segregation analysis
with RLS families argued for a single major gene acting
in an autosomal-dominant manner with a multifactorial
component (Winkelmann et al. 2002). Nevertheless, as
with other common diseases, RLS may have a polygenic
basis, possibly with mixed contributions of multiple ma-
jor genes, modifier genes, and complex interactions of
genes with genes and of genes with environmental fac-
tors. Thus, in this study, we attempted to genetically
analyze RLS as a complex trait. We recruited 15 mul-
tiplex RLS families with 453 subjects (134 affected with
RLS) and did a genomewide scan to identify novel sus-
ceptibility loci for RLS.

Material and Methods

Ascertainment of Multiplex RLS Families

A total of 15 large and extended multiplex RLS fam-
ilies, with a total of 453 subjects, including 134 indi-
viduals affected with RLS, were recruited in North
America for this study. The largest family consisted of
90 members, and the smallest family had 7 members.
All probands were recruited from the patients seen at
the Baylor College of Medicine Movement Disorders
Clinic (W.G.O.). Families were selected if the proband
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had at least one first-degree relative who was also af-
fected with RLS. We attempted to contact all living ge-
netic relatives within these families, and then a majority
of them (~75%) were enrolled in this study. Because
recruitment began in 1996, RLS diagnosis was based on
the 1995 IRLSSG criteria (Walters 1995). The phenotype
was not determined on the basis of symptom severity.
All subjects completed written questionnaires (Hening
and Allen 2003) and, subsequently, were interviewed by
a neurologist with particular expertise in RLS (W.G.O.).
These interviews took place at two family-reunions, at
the Baylor College of Medicine, or by phone. The in-
terviewer was not blinded to the family status of the
study subject. Physical examination is not part of the
diagnostic criteria for RLS, but it was performed on
subjects who were interviewed in person. To determine
the secondary causes of RLS, interviewed subjects were
asked whether they had a history of kidney disease, a
history of anemia, a history of damage to the nerves,
and so forth, except in the case of probands, who all
had normal serum ferritin levels. Two probands had mi-
nor neuropathy, but we concluded that it was not related
to the RLS. Subjects who experienced RLS only during
pregnancy were not phenotyped as positive for RLS.
Despite that children may have a different presentation
of symptoms than the presentation seen in adults, chil-
dren were only phenotyped as having RLS if they met
the inclusion criteria for adults. Although patients were
not reinterviewed after publication of the 2003 NIH
criteria (Allen et al. 20034, 2003b; Walters et al. 2003),
we believe that applying these criteria would not change
the phenotype in any case. Informed consent was ob-

Table 2
Correlation Coefficients (r) of RLS among Various Relative Pairs
RELATIONSHIP No. OF PAIRS r
1st-degree relatives: 918 171%%
Parent-offspring: 567 .096** + .033
Father-son 135 .195% + .088
Mother-son 134 -.182* = .110
Father-daughter 148 232%* + .087
Mother-daughter 150 132 = 103
Siblings: 351 291%* = .096
Brother-brother 106 480%* + 161
Brother-sister 166 161 = 132
Sister-sister 79 392%* £ 122
2nd-degree relatives: 1205 .039
Grandparent-grandchild 439 -.032 = .051
Avuncular 766 .079 = .089
3rd-degree relatives: 1243 .090%*
Great-grandparent 184 —.015 + .078
First cousin 604 .091 = .088
Great-avuncular 455 131 = .098
4th-degree relatives: 1412 .0640*
First cousin once removed 920 .067 = .073
Second cousin 492 .058 = .084
Unrelated spouse 117 —.412*% + 085

NoOTE—*P <.05; **P <.01
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Table 3
Summary of Chromosomal Regions with an NPL Score >2.0
NPL SCORE
Mar
CHROMOSOME POSITION
AND MARKER LOCATION (cM) Multipoint  Two-point
3:
D352427 3q26.31 188.0 2.03 .75
4:
ATTO15 26.2 1.76 2.09
D4S1644 4q31.21 143.4 2.28 98
D4S1625 4q31.21 146.1 2.19 1.40
D452417 4q34.3 182.0 2.16 1.00
S:
D552505 5p15.32 14.3 2.03 1.07
D552845 5p14.3 36.0 2.61 2.25
D551470 5p13.3 45.0 2.68 1.68
6:
D652439 6p22.3 42.0 2.06 1.16
9:
D9S286 9p24.1 17.9 3.22 3.41
GATA187D09  9p23 22.0 2.87 .60

NOTE.—NPL scores were computed using GENEHUNTER. Allele
frequencies for the markers were estimated as ML, by the use of SAGE
FREQ and the genotyping data generated in this study.

tained from participants in accordance with standards
established by local institutional review boards. The
summary statistics for the 15 multiplex pedigrees are
shown in table 1.

Genotyping

We performed genomewide genotyping for 144 study
subjects from the 15 multiplex RLS families, including
both RLS patients and unaffected family members, on
the basis of DNA-sample availability. Genomic DNA
was prepared from whole blood using the DNA Isolation
Kit for Mammalian Blood (Roche Diagnostic). Initial
genotyping was performed by the NHLBI Mammalian
Genotyping Service, directed by Dr. J. Weber, with 404
~10-cM-spaced polymorphic markers (microsatellite
markers and SNPs) spanning the human genome, with
a maximum gap of 17 ¢cM (Weber and Broman 2001).
Additional genotyping with microsatellite markers was
done in our laboratory, as described elsewhere (Wang et
al. 1995, 1996, 2003; Chen et al. 1998).

Data Preparation

The process of data collection was monitored and su-
pervised by experts in statistical genetics and human
genetics, for suitability of genetic analysis. The RLS dis-
ease phenotype information was updated on a regular
basis and was entered into our database for genetic anal-
ysis of RLS. Prior to the genetic analysis, several rounds
of data cleaning and assurance were performed on the
data set. Obvious locus-order errors and genotyping er-
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rors that commonly occur with large-scale genotyping
were corrected (locus-order errors were detected by the
Marshfield NHLBI Genotyping Service). Allele frequen-
cies for the markers in the cohort were estimated ac-
cording to maximum likelihood (ML), with the use of
the SAGE program FREQ (SAGE 2003) and the geno-
typing data generated in this study. Pedigree relationship
was tested using the SAGE RELTEST, which employs a
Markov-process model of allele-sharing along the chro-
mosome and uses genome-scan data to classify pairs of
pedigree members according to their true relationship
(Olson 1999; SAGE 2003). After correcting relation-
ships, SAGE MARKERINFO (SAGE 2003) was used to
detect any Mendelian-inheritance inconsistency for each
marker, and, if detected, then the inconsistent genotyp-
ing data for the marker were removed manually. Inher-
itance inconsistency was detected in one male, and the
individual was excluded from linkage analysis.

Familial Aggregation Analysis

Familial correlations were estimated using SAGE
FCOR (SAGE 2003) to quantify the genetic contribu-
tions in the ascertained multiplex families. FCOR cal-
culates multivariate familial correlations and their as-
ymptotic SEs, for all pair-types available in the RLS
pedigrees, on the basis of the equivalent number of in-
dependent pairs that, theoretically, could have been used
to obtain the same SE for a given correlation (SAGE
2003). The program estimates familial correlations for
both subtypes and main types (groups of subtypes), to-
gether with the corresponding asymptotic SEs derived
from the variance-covariance matrices of the estimated
correlations (SAGE 2003). Correlations for relative pairs
at different levels (the first-degree relative pairs to the
fourth-degree relative pairs, etc.) were averaged over all
the types and weighted uniformly (each pair with in-
versely proportional to the number of such pairs in the
pedigrees) (SAGE 2003). These large extended families
provide sufficient information to decompose genetic
components from RLS phenotypic variations. Reliable
estimates for various types of relative pairs can be ob-
tained. As shown in table 1, the recruited pedigrees con-
sist of 1 pedigree with 2 generations, 5 with 3 genera-
tions, 7 with 4 generations, and 2 with 5 generations,
which provide a combined maximum of 634 parent-
offspring pairs, 399 sibling-sibling pairs, and 492 grand-
parent-grandchild pairs. Technically, familial aggrega-
tion analysis is a more detailed version of the mixed
linear model approach, in that each type of relative pair
is estimated separately instead of modeling them as a
function of a few parameters in a single covariance ma-
trix. Historically, familial aggregation analysis has been
the most popular method for determining genetic causes
in disease manifestation. This method, in essence, is to
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estimate the correlations between various biological rel-
atives and then assume that they can be explained par-
simoniously by an additive genetic contribution and a
common household contribution, without having to
make other assumptions of the mixed linear model.

Familial Risk Ratios Estimation

Familial risk ratios (\;) were estimated, as described
elsewhere (Risch 1990). In brief, N, is the risk of type-
R relatives of affected individuals of being affected them-
selves, divided by the population-prevalence frequency
(K). If the frequency of affected pairs with relationship
R is denoted by K,, then Ay = K,/K* (Risch 1990).

Linkage Analysis

Nonparametric linkage (NPL) analysis. — Affected rel-
ative pair (ARP) analysis was done by use of the NPL
analysis implemented in GENEHUNTER (Kruglyak et
al. 1996). Like other ARP methods, the NPL statistic
measures allele sharing among the affected individuals
within a pedigree (Kruglyak et al. 1996). The scoring
function statistic was used to evaluate, simultaneously,
allele sharing among all those affected in a nuclear fam-
ily, in contrast to pairwise comparison. Both two-point
and multipoint NPL analyses were performed. This scor-
ing function was asymptotically distributed as the Z
statistic.

Model-based linkage analysis.— Two-point linkage
analysis between the underlying disease locus and each
marker was performed using LINKAGE version 5.2 (La-
throp et al. 1985). Multipoint LOD scores were com-
puted using SimWalk2 (Lange and Sobel 1991), with
input files automatically made by Mega2 version 2.5
(Mukhopadhyay et al. 1999). An autosomal-dominant
inheritance mode was assumed for the putative disease
locus, and penetrance was set at 0.95 on the basis of
observations of the high frequencies of affected persons
in at-risk sibships within pedigrees. The frequency of the
disease allele was set to 0.001. The allele frequencies of
markers were 1/n, where n is the number of alleles
observed.

Results

Familial Aggregation Analysis

Familial aggregation analysis (table 2) yielded corre-
lation coefficients (r) for pedigree relatives at four levels
of degrees, consisting of 14 major relative-types. The
correlations for sibling relationship are intraclass cor-
relations, and those for other relationships are interclass
correlations. Statistical tests, against the null hypothe-
sis of zero correlation, were conducted by a ¢ test using
the asymptotic SE estimates supplied by SAGE FCOR
(SAGE 2003).
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Table 4

Pairwise LOD Scores between RLS and Chromosome 9p24-22
Markers Obtained by Model-Based Linkage Analysis in Two
Extended RLS Kindreds

RECOMBINATION FRACTION (O)

MARKER AND KINDRED .00 .05 10 .20 .30 .40

D9S1779:
40004 .00 .00 .00 .00 .00 .00
40015 -1.19 .61 75 70 49 22
Total -1.19 .61 7570 49 22
D9S1871:
40004 29 27 25 .20 14 .07
40015 1.99 183 165 129 .89 47
Total 228 210 190 149 1.03 .54
D9S2169:
40004 .89 .82 75 .60 43 23
40015 191 175 158 121 .83 .41
Total 2.80 2.57 233 181 126 .64
D9S286:
40004 1.79 163 147 111 .72 32
40015 1.98 1.81 1.64 128 .89 .47
Total 3.77 344 311 239 1.61 .79
D9S168:
40004 .00 .00 .00 .00 .00 .00
40015 1.84 1.68 1.51 116 .79 .39
Total 1.84 1.68 151 116 .79 .39
D9S268:
40004 .58 47 36 .14 —-.03 -.08
40015 1.54 140 126 96 .64 31
Total 212 187 162 110 .61 .23
D9S274:
40004 1.24  1.09 94 64 33 .09
40015 198 181 1.64 1.28 .89 .47
Total 324 290 258 1.92 122 1.56
D9S51839:
40004 .00 .00 .00 .00 .00 .00
40015 77 .68 58 .38 .20 .05
Total 77 .68 58 .38 .20 .05
D9S162:
40004 -1.50 —1.70 .02 .11 .07 .00
40015 2.02 185 167 130 .90 .47
Total 52 A5 1.69 141 97 47
D9S1121:
40004 -1.50 —148 —-1.29 —-80 —47 —-.23
40015 .20 17 14 .08 .03 .01
Total -1.30 —-1.31 —-1.15 =72 —-.44 -22

NOTE.—LOD scores were computed with the assumption of 95%
penetrance and a gene frequency of 0.001. The allele frequencies of
markers were 1/n, where 7 is the number of alleles observed.

For the first-degree relative pairs (918 pairs), r =
0.17; for the second-degree relative pairs (1,205 pairs),
r = 0.04; for the third-degree relative pairs (1,243
pairs), r = 0.09; and, for the fourth-degree relative pairs
(1,412 pairs), r = 0.06 (table 2). These results suggest
a strong familial aggregation of RLS in this ascertained
cohort. The correlation estimates between the same-gen-
der pairs of individuals were higher than those between
individuals of the opposite sex, with brother-brother
pairs having the highest correlation (r = 0.48), followed
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by sister-sister pairs (r = 0.39), and sister-brother pairs
having the lowest correlation (r = 0.19), which may
suggest a sex-linked effect for the disorder. There is a
considerable negative correlation between spouses
(r = —0.41), which may reflect the lower risk of RLS
among the spouses who married into the family (5%-
12%) than in the ascertained families (29.6%). The de-
rived heritability, estimated by combining all informa-
tion from all types of relative pairs, was 0.60, which
indicates that RLS is a highly heritable trait in this as-
certained cohort.

We also estimated familiar relative risk ratios for the
first-degree relative pairs using Risch’s model (1990). For
a conservative estimate, a high-population prevalence
rate of 12% was used in the calculation. The absolute
risks, in terms of the concordance rate of affected status
between the pairs, were 23% for parent-offsprings,
whose N\ = 10.25, and 15% for siblings, whose \; =
16.23. These results are in agreement with FCOR cor-
relations-analysis and suggest that there is a strong fa-
milial aggregation in the RLS families studied.

Model-Free Linkage Analysis

Genomewide NPL analysis of our RLS cohort was
conducted using GENEHUNTER. The chromosomal
regions identified as “potentially interesting” with a
peak NPL score of >2.0 (Kruglyak et al. 1996) are listed
in table 3 and shown in figure 1. Ten markers on five
different chromosomes (chromosomes 3, 4, 5, 6, 9) gen-
erated multipoint NPL scores >2.0 (table 3; fig. 1). The
highest NPL scores, 3.22 and 2.87, were obtained for
two markers, D95286 and GATA187D09, that are sep-
arated by 4.1 ¢cM on chromosome 9p24-22. The linkage
to another marker, GATA27A11 (D9S925) which is 10.1
cM to GATA187D09, remains positive for linkage, with
an NPL score of 1.69. Then, a permutation test with up
to 10,000 permutations was performed using SimWalk2
(Lange and Sobel 1991). A pointwise empirical P value
of .009 was obtained for this 9p24-22 RLS locus.

Model-Based Linkage Analysis

To validate the results from NPL analysis, we analyzed
chromosomal regions with NPL scores >2.0 by use of
model-based linkage analysis. The results from two ex-
tended RLS families, 40004 and 40015, confirmed the
existence of the chromosome 9p24-22 locus that was
identified by model-free linkage analysis (table 4). The
results of two-point linkage analysis with selected mark-
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ers at the chromosome 9p24-22 locus are shown in table
4. Combined two-point LOD scores of 3.77 and 3.24,
at a recombination fraction of zero, were obtained for
two nearby markers, D9S286 and D9S274, respectively,
on the assumption of an autosomal-dominant mode of
inheritance (table 4).

Fine mapping was performed with additional markers
D9S1779, D9S1871, D9S2169, D9S168, D9S268,
D9S1839, D9S162, and D9S1121 at the chromosome
9p24-22 RLS locus. Multipoint LOD scores for the re-
gion were obtained using SimWalk2 (Lange and Sobel
1991) for random walk analysis of multiple marker in-
formation, and the resulting scores are shown in figure
2. The peak multipoint LOD score of 3.9 was obtained
from marker D9S2169 to D9S286 (fig. 2).

Haplotype transmission-pattern analysis further val-
idated the mapping of a novel RLS locus to chromo-
some 9p24-22 (figs. 3 and 5). In kindred 40004, all affec-
ted individuals—but none of the normal individuals—
the eight contiguous markers D9S1779, D9S1871,
D9S2169, D9S286, D9S168, D9S268, D9S274 and
D9S51839 (fig. 3). The common haplotype shared by all
affected individuals in kindred 40015—but not by any
normal individuals—was 3_2_3_3_2_2 3_10 for the
eight contiguous markers D951871, D952169, D9S286,
D9S168, D9S268, D9S274, D9S1839, and D9S162.

Two obligate recombination events, one in kindred
40004 (individual III-1; fig. 3) and the other in kindred
40015 (individual II-1; fig. 4), defined the critical 9p24-
22 RLS disease gene within a region spanned by markers
D9S1779 and D9S162 (fig. 5).

Discussion

This study represents the first model-free linkage analysis
designed to genetically dissect the complex disease RLS
and to identify genetic loci causing susceptibility to RLS.
Our study provided significant evidence of linkage for
a novel disease-susceptibility RLS locus on chromosome
9p24-22. Model-free multipoint linkage analysis re-
vealed an NPL score of 3.22 at marker D9S286. The
permutation tests by SimWalk2 revealed an empirical
pointwise P value of .009. Later, model-based linkage
analysis with the assumption of an autosomal-dominant
mode of inheritance resulted in a multipoint LOD score
of 3.91 at D9S286 in two extended families. These re-
sults validate the identification of the significant linkage
to RLS on chromosome 9p24-22.

Figure 1

Genomewide NPL scan for RLS-susceptibility loci. A total of 404 microsatellite markers spanning the entire human genome

were genotyped in 144 individuals from multiplex RLS families. The vertical Y-axis of each plot denotes NPL scores generated by GENEHUNTER.
The X-axis represents marker map positions in ¢cM from the telomere of the p arm of each chromosome. The horizontal solid line in each plot

corresponds to an NPL score of 3.0.
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Figure 2 Multipoint LOD-score analysis for markers at the 9p 24.2-22.3 RLS locus. Random walk analysis was done using SimWalk2.

Location of marker D9S1779 is arbitrarily set at 0 cM. Other microsatellite markers are scaled on the basis of their absolute distance (in cM)
from D9S1779. Multipoint LOD scores are plotted on the ordinate. The dashed line marks an LOD score of 3.0.

Two other model-based linkage analyses were re-
cently reported for RLS. Desautels et al. (2001) iden-
tified an autosomal-recessive RLS locus on chromosome
12922-23 in a single family, and Bonati et al. (2003)
mapped an autosomal-dominant RLS locus to chro-
mosome 14q13-21, also in a single family. In our
model-free linkage analysis, no markers on chromo-
some 14q yielded an NPL score >1.0 (fig. 1). Interest-
ingly, marker PAH yielded an NPL score of 1.29 in our
model-free linkage analysis (fig. 1). As PAH is located
within the 12q22-23 RLS-locus between D1251044 and
D12S78 and is 2.4 cM to marker D12S78, our results
may provide indirect confirmation of the mapping of
an RLS gene on chromosome 12q22-23, reported else-
where (Desautels et al. 2001). Identification of three
genetic loci for RLS on three different chromosomes,
12q22-23 (Desautels et al. 2001), 14q13-21 (Bonati et
al. 2003), and 9p24-22 (this study), suggests that RLS
is a genetically highly-heterogeneous disorder.

Twin studies (Ondo et al. 2000) and the observation
that ~65% of patients report a family history of RLS
(Montplaisir et al. 1997; Lazzarini et al. 1999; Roth-

dach et al. 2000; Allen et al. 2002; Winkelmann et al.
2002) suggest that genetic factors contribute to the
pathogenesis of RLS. However, few formal epidemio-
logical and statistical studies have been performed to
elucidate the genetic architecture of this complex dis-
ease. This study reports such a formal analysis. A high,
positive 7 of 0.17 between the first-degree relatives sug-
gests their strong phenotypic resemblance. Furthermore,
the heritability of RLS was estimated to be a very high
value of 0.60 for all types of relative pairs. These results
indicate that RLS is a highly heritable trait in this as-
certained cohort. It is interesting that the correlations
for relative pairs were higher for siblings than for par-
ent-offspring pairs and were highest for same-sex sib-
lings. This suggests that gender and other environmental
factors are involved in RLS and that our estimate may
represent an upper limit of the degree of heritability
that may include a part of shared common environment.
It is important to note that familial correlations and
heritability were estimated for an ascertained cohort,
and the results may not be generalizable to the RLS
population at large.
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Figure 3 Haplotype analysis in kindred 40004 affected with

RLS. Circles and squares denote females and males, respectively; black-
ened symbols indicate affected individuals; unblackened symbols in-
dicate normal individuals; the symbol with a slash indicates a deceased
individual; and symbols with a question mark indicate an individual
with uncertain phenotype. Genotyping results for markers D9S1779,
D9S1871, D9S2169, D9S286, DIS168, DIS268, D9IS274, DIS1839,
D9S162, and D9S1121 are shown under each symbol. Haplotypes
were constructed on the basis of the minimum number of recombi-
nations between markers. The disease haplotype shared by all affected
individuals is denoted by the blackened vertical bar, and normal hap-
lotype is denoted by an unblackened vertical bar. Recombination
events were observed in individuals III-1, III-2, and III-3 and defined
the critical RLS gene location as upward from marker D9S162.

The 9p24-22 RLS locus contains >100 genes (NCBI
Human Genome Resources; UCSC Genome Bioinfor-
matics). Among the genes in the region, we selected
three genes for mutation analysis on the basis of their
locations and physiology. Multi-PDZ Domain Protein
1 (MUPP1 [MIM 603785]) is a gene encoding a protein
with 13 PDZ domains that interacts with the C-terminal
domain of the serotonin 5-HT, receptor (Ullmer et al.
1998). It was isolated in a yeast two-hybrid screening
with the C-terminal domain of the 5-HT, receptor as
the bait. MUPP1 is expressed in the brain and in several
peripheral organs. MUPP1 might be involved in the
mechanisms of G-protein-coupled receptor signaling,
for example, the 5-HT,. receptor-activated phosphoi-
nositide-linked second message system. Thus, MUPP1
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became a candidate gene for RLS. All 44 exons of
MUPPI1, including exon-intron boundaries, were
screened for RLS-related mutations by use of direct
DNA-sequence analysis and single-strand conformation
polymorphism analysis, but no disease-causing muta-
tions were found.

The second candidate gene is SLCI1IA1 (MIM
133550), which encodes the human high-affinity neu-
ronal and epithelial glutamate transporter EAAC1. The
function of EAACT1 is to transport L-glutamate and also
L- and D-aspartate, a function that is essential for ter-
minating the postsynaptic action of glutamate by rap-
idly removing released glutamate from the synaptic
cleft. It acts as a symport by cotransporting sodium.
EAAC1(EAAT3) mRNA and protein expression was de-
tected in both brain and peripheral tissues. All 12 exons

40015
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Figure 4 Haplotype analysis in kindred 40015 affected with
RLS. Data are shown as described in fig. 3. Two recombination events
were observed, one in individual II-1 and the other in III-1. The obligate
recombination in II-1 defined the RLS gene location as downward
from D9S1779.
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Figure 5 Ideogram of chromosome 9 with Geimsa banding and
localization of the 9p24-22 RLS locus. The genetic map with chro-
mosome 9p24-22 markers is shown, and the likely location of the
putative RLS gene is indicated by a vertical bar (from D9S1871 to
D9S1839).

of the SLC1A1 gene, including all exon-intron bound-
aries, were screened for mutations in RLS patients, but
none were found. Furthermore, no disease-causing mu-
tations were identified in the third candidate gene,
KCNV2 (MIM 607604), which encodes a potassium-
channel subunit that mediates the voltage-dependent
potassium-ion permeability of excitable membranes.

Continued mutation analysis in candidate genes that
are located within the 9p24-22 RLS locus and that play
a role in neuronal signaling, iron metabolism, and do-
paminergic function will lead to the identification of an
underlying major (or minor) gene for common disease
RLS. Identification of an RLS gene should provide in-
sights into the molecular mechanism for the pathogen-
esis of RLS.

Am. J. Hum. Genet. 74:876-885, 2004
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